29.20.21 problem 568

Internal problem ID [5162]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 20
Problem number : 568
Date solved : Sunday, March 30, 2025 at 06:46:16 AM
CAS classification : [_exact, _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (2+x y\right ) y^{\prime }&=3+2 x^{3}-2 y-x y^{2} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 47
ode:=x*(2+x*y(x))*diff(y(x),x) = 3+2*x^3-2*y(x)-x*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-2-\sqrt {x^{4}-2 c_1 +6 x +4}}{x} \\ y &= \frac {-2+\sqrt {x^{4}-2 c_1 +6 x +4}}{x} \\ \end{align*}
Mathematica. Time used: 0.681 (sec). Leaf size: 62
ode=x(2+x y[x])D[y[x],x]==3+2 x^3-2 y[x]-x y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {2 x+\sqrt {x^2 \left (x^4+6 x+4+c_1\right )}}{x^2} \\ y(x)\to \frac {-2 x+\sqrt {x^2 \left (x^4+6 x+4+c_1\right )}}{x^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**3 + x*(x*y(x) + 2)*Derivative(y(x), x) + x*y(x)**2 + 2*y(x) - 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out