29.22.17 problem 625

Internal problem ID [5217]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 625
Date solved : Sunday, March 30, 2025 at 06:54:38 AM
CAS classification : [_rational, _Bernoulli]

\begin{align*} 3 y^{2} y^{\prime }&=1+x +a y^{3} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 104
ode:=3*y(x)^2*diff(y(x),x) = 1+x+a*y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {{\left (\left ({\mathrm e}^{a x} c_1 \,a^{2}-1+a \left (-x -1\right )\right ) a \right )}^{{1}/{3}}}{a} \\ y &= -\frac {{\left (\left ({\mathrm e}^{a x} c_1 \,a^{2}-1+a \left (-x -1\right )\right ) a \right )}^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2 a} \\ y &= \frac {{\left (\left ({\mathrm e}^{a x} c_1 \,a^{2}-1+a \left (-x -1\right )\right ) a \right )}^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2 a} \\ \end{align*}
Mathematica. Time used: 24.43 (sec). Leaf size: 111
ode=3 y[x]^2 D[y[x],x]==1+x+a y[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{a^2 c_1 e^{a x}-a (x+1)-1}}{a^{2/3}} \\ y(x)\to -\frac {\sqrt [3]{-1} \sqrt [3]{a^2 c_1 e^{a x}-a (x+1)-1}}{a^{2/3}} \\ y(x)\to \frac {(-1)^{2/3} \sqrt [3]{a^2 c_1 e^{a x}-a (x+1)-1}}{a^{2/3}} \\ \end{align*}
Sympy. Time used: 22.493 (sec). Leaf size: 196
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*y(x)**3 - x + 3*y(x)**2*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [3]{\left (C_{1} + 3 \left (\begin {cases} - \frac {x e^{- a x}}{3 a} - \frac {e^{- a x}}{3 a} - \frac {e^{- a x}}{3 a^{2}} & \text {for}\: a^{2} \neq 0 \\\frac {x^{2}}{6} + \frac {x}{3} & \text {otherwise} \end {cases}\right )\right ) e^{a x}}, \ y{\left (x \right )} = \frac {\sqrt [3]{\left (C_{1} + 3 \left (\begin {cases} - \frac {x e^{- a x}}{3 a} - \frac {e^{- a x}}{3 a} - \frac {e^{- a x}}{3 a^{2}} & \text {for}\: a^{2} \neq 0 \\\frac {x^{2}}{6} + \frac {x}{3} & \text {otherwise} \end {cases}\right )\right ) e^{a x}} \left (-1 - \sqrt {3} i\right )}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{\left (C_{1} + 3 \left (\begin {cases} - \frac {x e^{- a x}}{3 a} - \frac {e^{- a x}}{3 a} - \frac {e^{- a x}}{3 a^{2}} & \text {for}\: a^{2} \neq 0 \\\frac {x^{2}}{6} + \frac {x}{3} & \text {otherwise} \end {cases}\right )\right ) e^{a x}} \left (-1 + \sqrt {3} i\right )}{2}\right ] \]