Internal
problem
ID
[5219]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
22
Problem
number
:
627
Date
solved
:
Sunday, March 30, 2025 at 06:54:43 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(2*x^2+3*y(x)^2)*diff(y(x),x)+x*(3*x+y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2+3*y[x]^2)*D[y[x],x]+x*(3*x+y[x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(3*x + y(x)) + (2*x**2 + 3*y(x)**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out