29.22.19 problem 627

Internal problem ID [5219]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 627
Date solved : Sunday, March 30, 2025 at 06:54:43 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right )&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 35
ode:=(2*x^2+3*y(x)^2)*diff(y(x),x)+x*(3*x+y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {3 \textit {\_a}^{2}+2}{\textit {\_a}^{3}+\textit {\_a} +1}d \textit {\_a} +3 \ln \left (x \right )+3 c_1 \right ) x \]
Mathematica. Time used: 0.153 (sec). Leaf size: 66
ode=(2*x^2+3*y[x]^2)*D[y[x],x]+x*(3*x+y[x])==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\text {RootSum}\left [\text {$\#$1}^3+\text {$\#$1}+1\&,\frac {3 \text {$\#$1}^2 \log \left (\frac {y(x)}{x}-\text {$\#$1}\right )+2 \log \left (\frac {y(x)}{x}-\text {$\#$1}\right )}{3 \text {$\#$1}^2+1}\&\right ]=-3 \log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(3*x + y(x)) + (2*x**2 + 3*y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out