Internal
problem
ID
[5243]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
23
Problem
number
:
652
Date
solved
:
Sunday, March 30, 2025 at 07:21:04 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(x^2+a*x*y(x)+2*y(x)^2)*diff(y(x),x) = (a*x+2*y(x))*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x(x^2+a x y[x]+2 y[x]^2)D[y[x],x]==(a x+2 y[x])y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(x*(a*x*y(x) + x**2 + 2*y(x)**2)*Derivative(y(x), x) - (a*x + 2*y(x))*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)