29.26.10 problem 746

Internal problem ID [5331]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 26
Problem number : 746
Date solved : Sunday, March 30, 2025 at 07:59:40 AM
CAS classification : [_exact]

\begin{align*} \left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right )&=0 \end{align*}

Maple. Time used: 0.060 (sec). Leaf size: 180
ode:=(sinh(x)+x*cosh(y(x)))*diff(y(x),x)+y(x)*cosh(x)+sinh(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {{\mathrm e}^{-\operatorname {RootOf}\left (\textit {\_Z} \,{\mathrm e}^{\textit {\_Z} +2 x}-x \,{\mathrm e}^{\textit {\_Z} +2 x}+x \,{\mathrm e}^{2 \textit {\_Z}}+2 c_1 \,{\mathrm e}^{\textit {\_Z} +x}-x \,{\mathrm e}^{2 x}-\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+x \,{\mathrm e}^{\textit {\_Z}}\right )} \left (2 c_1 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z} \,{\mathrm e}^{\textit {\_Z} +2 x}-x \,{\mathrm e}^{\textit {\_Z} +2 x}+x \,{\mathrm e}^{2 \textit {\_Z}}+2 c_1 \,{\mathrm e}^{\textit {\_Z} +x}-x \,{\mathrm e}^{2 x}-\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+x \,{\mathrm e}^{\textit {\_Z}}\right )+x}+x \left ({\mathrm e}^{2 \operatorname {RootOf}\left (\textit {\_Z} \,{\mathrm e}^{\textit {\_Z} +2 x}-x \,{\mathrm e}^{\textit {\_Z} +2 x}+x \,{\mathrm e}^{2 \textit {\_Z}}+2 c_1 \,{\mathrm e}^{\textit {\_Z} +x}-x \,{\mathrm e}^{2 x}-\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+x \,{\mathrm e}^{\textit {\_Z}}\right )}-{\mathrm e}^{2 x}\right )\right )}{{\mathrm e}^{2 x}-1} \]
Mathematica. Time used: 0.227 (sec). Leaf size: 17
ode=(Sinh[x]+x*Cosh[y[x]])*D[y[x],x]+y[x]*Cosh[x]+Sinh[y[x]]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}[x \sinh (y(x))+y(x) \sinh (x)=c_1,y(x)] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x*cosh(y(x)) + sinh(x))*Derivative(y(x), x) + y(x)*cosh(x) + sinh(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out