Internal
problem
ID
[5349]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
26
Problem
number
:
764
Date
solved
:
Sunday, March 30, 2025 at 08:02:24 AM
CAS
classification
:
[_quadrature]
ode:=diff(y(x),x)^2 = a^2*(1-ln(y(x))^2)*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^2==a^2*(1-Log[y[x]]^2)*y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**2*(1 - log(y(x))**2)*y(x)**2 + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)