29.27.8 problem 774

Internal problem ID [5358]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 27
Problem number : 774
Date solved : Sunday, March 30, 2025 at 08:02:54 AM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime }-y^{2}&=0 \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 66
ode:=diff(y(x),x)^2-2*diff(y(x),x)-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {-\sqrt {1+y^{2}}+\operatorname {arcsinh}\left (y\right ) y-1+\left (x -c_1 \right ) y}{y} &= 0 \\ \frac {\sqrt {1+y^{2}}-\operatorname {arcsinh}\left (y\right ) y-1+\left (x -c_1 \right ) y}{y} &= 0 \\ \end{align*}
Mathematica. Time used: 0.964 (sec). Leaf size: 104
ode=(D[y[x],x])^2-2*D[y[x],x]-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {\text {$\#$1}^2+1}+\text {$\#$1} \log \left (\sqrt {\text {$\#$1}^2+1}-\text {$\#$1}\right )+1}{\text {$\#$1}}\&\right ][-x+c_1] \\ y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {\text {$\#$1}^2+1}}{\text {$\#$1}}-\log \left (\sqrt {\text {$\#$1}^2+1}-\text {$\#$1}\right )+\frac {1}{\text {$\#$1}}\&\right ][x+c_1] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 2.181 (sec). Leaf size: 80
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x)**2 - 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} - \frac {\sqrt {y^{2}{\left (x \right )} + 1}}{y{\left (x \right )}} + \operatorname {asinh}{\left (y{\left (x \right )} \right )} - \frac {1}{y{\left (x \right )}} & \text {for}\: \left |{y^{2}{\left (x \right )}}\right | > 1 \\\frac {\sqrt {y^{2}{\left (x \right )} + 1}}{y{\left (x \right )}} - \operatorname {asinh}{\left (y{\left (x \right )} \right )} - \frac {1}{y{\left (x \right )}} & \text {otherwise} \end {cases} = C_{1} - x, \ x + \frac {\sqrt {y^{2}{\left (x \right )} + 1}}{y{\left (x \right )}} - \operatorname {asinh}{\left (y{\left (x \right )} \right )} - \frac {1}{y{\left (x \right )}} = C_{1}\right ] \]