29.36.21 problem 1089

Internal problem ID [5648]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 36
Problem number : 1089
Date solved : Sunday, March 30, 2025 at 09:52:56 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} {y^{\prime }}^{4}+f \left (x \right ) \left (y-a \right )^{3} \left (y-b \right )^{3} \left (y-c \right )^{2}&=0 \end{align*}

Maple. Time used: 0.146 (sec). Leaf size: 92
ode:=diff(y(x),x)^4+f(x)*(y(x)-a)^3*(y(x)-b)^3*(y(x)-c)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{}^{y}\frac {1}{\left (\textit {\_a} -b \right )^{{3}/{4}} \sqrt {\textit {\_a} -c}\, \left (\textit {\_a} -a \right )^{{3}/{4}}}d \textit {\_a} -\frac {\int _{}^{x}\left (-f \left (\textit {\_a} \right ) \left (y-c \right )^{2} \left (y-b \right )^{3} \left (y-a \right )^{3}\right )^{{1}/{4}}d \textit {\_a}}{\left (y-b \right )^{{3}/{4}} \sqrt {y-c}\, \left (y-a \right )^{{3}/{4}}}+c_1 = 0 \]
Mathematica. Time used: 16.067 (sec). Leaf size: 562
ode=(D[y[x],x])^4 +f[x] (y[x]-a)^3 (y[x]-b)^3 (y[x]-c)^2 ==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {c-\text {$\#$1}} \left (\frac {(b-\text {$\#$1}) (a-c)}{(c-\text {$\#$1}) (a-b)}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},\frac {(c-b) (a-\text {$\#$1})}{(a-b) (c-\text {$\#$1})}\right )}{(b-\text {$\#$1})^{3/4} (a-c)}\&\right ]\left [\int _1^x-\sqrt [4]{-1} \sqrt [4]{f(K[1])}dK[1]+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {c-\text {$\#$1}} \left (\frac {(b-\text {$\#$1}) (a-c)}{(c-\text {$\#$1}) (a-b)}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},\frac {(c-b) (a-\text {$\#$1})}{(a-b) (c-\text {$\#$1})}\right )}{(b-\text {$\#$1})^{3/4} (a-c)}\&\right ]\left [\int _1^x\sqrt [4]{-1} \sqrt [4]{f(K[2])}dK[2]+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {c-\text {$\#$1}} \left (\frac {(b-\text {$\#$1}) (a-c)}{(c-\text {$\#$1}) (a-b)}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},\frac {(c-b) (a-\text {$\#$1})}{(a-b) (c-\text {$\#$1})}\right )}{(b-\text {$\#$1})^{3/4} (a-c)}\&\right ]\left [\int _1^x-(-1)^{3/4} \sqrt [4]{f(K[3])}dK[3]+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\frac {4 \sqrt [4]{a-\text {$\#$1}} \sqrt {c-\text {$\#$1}} \left (\frac {(b-\text {$\#$1}) (a-c)}{(c-\text {$\#$1}) (a-b)}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},\frac {(c-b) (a-\text {$\#$1})}{(a-b) (c-\text {$\#$1})}\right )}{(b-\text {$\#$1})^{3/4} (a-c)}\&\right ]\left [\int _1^x(-1)^{3/4} \sqrt [4]{f(K[4])}dK[4]+c_1\right ] \\ y(x)\to a \\ y(x)\to b \\ y(x)\to c \\ \end{align*}
Sympy. Time used: 46.029 (sec). Leaf size: 146
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
f = Function("f") 
ode = Eq((-a + y(x))**3*(-b + y(x))**3*(-c + y(x))**2*f(x) + Derivative(y(x), x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \int \limits ^{y{\left (x \right )}} \frac {1}{\left (- y + a\right )^{\frac {3}{4}} \left (- y + b\right )^{\frac {3}{4}} \sqrt {- y + c}}\, dy = C_{1} - \int \sqrt [4]{- f{\left (x \right )}}\, dx, \ \int \limits ^{y{\left (x \right )}} \frac {1}{\left (- y + a\right )^{\frac {3}{4}} \left (- y + b\right )^{\frac {3}{4}} \sqrt {- y + c}}\, dy = C_{1} + \int \sqrt [4]{- f{\left (x \right )}}\, dx, \ \int \limits ^{y{\left (x \right )}} \frac {1}{\left (- y + a\right )^{\frac {3}{4}} \left (- y + b\right )^{\frac {3}{4}} \sqrt {- y + c}}\, dy = C_{1} - i \int \sqrt [4]{- f{\left (x \right )}}\, dx, \ \int \limits ^{y{\left (x \right )}} \frac {1}{\left (- y + a\right )^{\frac {3}{4}} \left (- y + b\right )^{\frac {3}{4}} \sqrt {- y + c}}\, dy = C_{1} + i \int \sqrt [4]{- f{\left (x \right )}}\, dx\right ] \]