31.1.5 problem 1.5

Internal problem ID [5703]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 2
Problem number : 1.5
Date solved : Sunday, March 30, 2025 at 10:03:20 AM
CAS classification : [_separable]

\begin{align*} \sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.041 (sec). Leaf size: 11
ode:=sin(x)*cos(y(x))-cos(x)*sin(y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \arccos \left (\frac {\cos \left (x \right )}{c_1}\right ) \]
Mathematica. Time used: 5.317 (sec). Leaf size: 47
ode=Sin[x]*Cos[y[x]]-Cos[x]*Sin[y[x]]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\arccos \left (\frac {1}{2} c_1 \cos (x)\right ) \\ y(x)\to \arccos \left (\frac {1}{2} c_1 \cos (x)\right ) \\ y(x)\to -\frac {\pi }{2} \\ y(x)\to \frac {\pi }{2} \\ \end{align*}
Sympy. Time used: 0.536 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(x)*cos(y(x)) - sin(y(x))*cos(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \operatorname {acos}{\left (C_{1} \cos {\left (x \right )} \right )} + 2 \pi , \ y{\left (x \right )} = \operatorname {acos}{\left (C_{1} \cos {\left (x \right )} \right )}\right ] \]