Internal
problem
ID
[5966]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
21.
Undetermined
Coefficients
Problem
number
:
Exercise
21.21,
page
231
Date
solved
:
Sunday, March 30, 2025 at 10:28:26 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-6*y(x) = x+exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]-6*y[x]==x+Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x - 6*y(x) - exp(2*x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)