Internal
problem
ID
[5973]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
21.
Undetermined
Coefficients
Problem
number
:
Exercise
21.32,
page
231
Date
solved
:
Sunday, March 30, 2025 at 10:28:38 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = exp(x)*(2*x-3); ic:=y(0) = 1, D(y)(0) = 3; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-5*D[y[x],x]-6*y[x]==Exp[x]*(2*x-3); ic={y[0]==1,Derivative[1][y][0] ==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3 - 2*x)*exp(x) + 6*y(x) - 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 3} dsolve(ode,func=y(x),ics=ics)