Internal
problem
ID
[6021]
Book
:
Differential
Gleichungen,
Kamke,
3rd
ed,
Abel
ODEs
Section
:
Abel
ODE
with
constant
invariant
Problem
number
:
problem
46
Date
solved
:
Sunday, March 30, 2025 at 10:31:48 AM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-x^a*y[x]^3+3*y[x]^2-x^(-a)*y[x]-x^(-2*a)+a*x^(-a-1) == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a*x**(-a - 1) - x**a*y(x)**3 + 3*y(x)**2 + Derivative(y(x), x) - y(x)/x**a - 1/x**(2*a),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*x**(-a - 1) - x**a*y(x)**3 + 3*y(x)**2 + Derivative(y(x), x) - y(x)/x**a - 1/x**(2*a) cannot be solved by the lie group method