Internal
problem
ID
[6027]
Book
:
A
treatise
on
ordinary
and
partial
differential
equations
by
William
Woolsey
Johnson.
1913
Section
:
Chapter
1,
Nature
and
meaning
of
a
differential
equation
between
two
variables.
page
12
Problem
number
:
3
Date
solved
:
Sunday, March 30, 2025 at 10:32:45 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=y(x)*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(D[y[x],x])^2+2*x*D[y[x],x]-y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2 - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out