35.6.9 problem 9

Internal problem ID [6159]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422
Problem number : 9
Date solved : Sunday, March 30, 2025 at 10:41:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \,{\mathrm e}^{-x} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 2*exp(-x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (c_1 x +x^{2}+c_2 \right ) \]
Mathematica. Time used: 0.025 (sec). Leaf size: 21
ode=D[y[x],{x,2}]+2*D[y[x],x]+y[x]==2*Exp[-x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (x^2+c_2 x+c_1\right ) \]
Sympy. Time used: 0.208 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2*exp(-x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + x\right )\right ) e^{- x} \]