35.6.23 problem 23

Internal problem ID [6173]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 6. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO. page 422
Problem number : 23
Date solved : Sunday, March 30, 2025 at 10:41:57 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=2 x \,{\mathrm e}^{x} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+y(x) = 2*x*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +\left (x -1\right ) {\mathrm e}^{x} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 23
ode=D[y[x],{x,2}]+y[x]==2*x*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (x-1)+c_1 \cos (x)+c_2 \sin (x) \]
Sympy. Time used: 0.081 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*exp(x) + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} + x e^{x} - e^{x} \]