Internal
problem
ID
[6317]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.3,
Linear
equations.
Exercises.
page
54
Problem
number
:
29
Date
solved
:
Sunday, March 30, 2025 at 10:51:15 AM
CAS
classification
:
[[_1st_order, _with_exponential_symmetries]]
ode:=(exp(4*y(x))+2*x)*diff(y(x),x)-1 = 0; dsolve(ode,y(x), singsol=all);
ode=(Exp[4*y[x]]+2*x)*D[y[x],x]-1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x + exp(4*y(x)))*Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)