4.12.9 Problems 801 to 900

Table 4.831: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

13831

\[ {} y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

13839

\[ {} y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

13841

\[ {} x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

13842

\[ {} x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

13853

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

13858

\[ {} y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

13859

\[ {} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

13862

\[ {} x^{\prime \prime \prime \prime }+x = t^{3} \]

13866

\[ {} y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

13867

\[ {} y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

13888

\[ {} y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

13890

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

13892

\[ {} y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13894

\[ {} y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13900

\[ {} y^{\prime \prime \prime } = 1 \]

13910

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

13912

\[ {} 3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

13959

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

13967

\[ {} y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

13968

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

13969

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

13970

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

13971

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

13972

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

13973

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

14010

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]

14011

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]

14012

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]

14013

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]

14014

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]

14015

\[ {} y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]

14024

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

14026

\[ {} y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

14087

\[ {} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

14154

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14156

\[ {} x y^{\prime \prime \prime } = 2 \]

14175

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

14176

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

14177

\[ {} y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y = 0 \]

14178

\[ {} y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

14179

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

14180

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

14181

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

14182

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = 0 \]

14193

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 2 x +3 \]

14194

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = 5 a^{4} {\mathrm e}^{a x} \sin \left (a x \right ) \]

14195

\[ {} y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 8 \cos \left (a x \right ) \]

14254

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

14273

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

14410

\[ {} x y^{\prime \prime \prime }+x y^{\prime } = 4 \]

14420

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

14426

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

14427

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

14428

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

14429

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]

14430

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

14431

\[ {} 36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14432

\[ {} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

14433

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

14434

\[ {} y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

14436

\[ {} y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

14437

\[ {} y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

14439

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

14440

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

14441

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

14442

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]

14443

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

14444

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

14445

\[ {} y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

14446

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

14447

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]

14448

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]

14449

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]

14456

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{x} x -3 x^{2} \]

14463

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]

14471

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

14929

\[ {} y^{\prime \prime \prime \prime } = 1 \]

15153

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

15154

\[ {} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

15156

\[ {} y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

15176

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

15177

\[ {} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

15196

\[ {} y^{\prime \prime \prime }+y = 0 \]

15199

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

15221

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

15222

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

15223

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

15224

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

15236

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

15237

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

15242

\[ {} y^{\prime \prime \prime }-9 y^{\prime } = 0 \]

15243

\[ {} y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

15282

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

15283

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

15284

\[ {} y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

15285

\[ {} y^{\prime \prime \prime \prime }-81 y = 0 \]

15286

\[ {} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

15287

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

15288

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

15289

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]