Internal
problem
ID
[6410]
Book
:
Basic
Training
in
Mathematics.
By
R.
Shankar.
Plenum
Press.
NY.
1995
Section
:
Chapter
10,
Differential
equations.
Section
10.4,
ODEs
with
variable
Coefficients.
Second
order
and
Homogeneous.
page
318
Problem
number
:
10.4.8
(d)
Date
solved
:
Sunday, March 30, 2025 at 10:54:55 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=x*diff(diff(y(x),x),x)+1/2*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]+1/2*D[y[x],x]+2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) + 2*y(x) + Derivative(y(x), x)/2,0) ics = {} dsolve(ode,func=y(x),ics=ics)