Internal
problem
ID
[6558]
Book
:
Schaums
Outline
Differential
Equations,
4th
edition.
Bronson
and
Costa.
McGraw
Hill
2014
Section
:
Chapter
24.
Solutions
of
linear
DE
by
Laplace
transforms.
Supplementary
Problems.
page
248
Problem
number
:
Problem
24.46
Date
solved
:
Sunday, March 30, 2025 at 11:07:20 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(q(t),t),t)+9*diff(q(t),t)+14*q(t) = 1/2*sin(t); ic:=q(0) = 0, D(q)(0) = 1; dsolve([ode,ic],q(t),method='laplace');
ode=D[ q[t],{t,2}]+9*D[ q[t],t]+14*q[t]==1/2*Sin[t]; ic={q[0]==0,Derivative[1][q][0]==1}; DSolve[{ode,ic},q[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") q = Function("q") ode = Eq(14*q(t) - sin(t)/2 + 9*Derivative(q(t), t) + Derivative(q(t), (t, 2)),0) ics = {q(0): 0, Subs(Derivative(q(t), t), t, 0): 1} dsolve(ode,func=q(t),ics=ics)