4.18.2 Problems 101 to 157

Table 4.887: Second order, non-linear and non-homogeneous

#

ODE

Mathematica

Maple

Sympy

13838

\[ {} x^{3} x^{\prime \prime }+1 = 0 \]

13845

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

13889

\[ {} y^{\prime \prime }+y y^{\prime } = 1 \]

13907

\[ {} y y^{\prime \prime } = 1 \]

13934

\[ {} x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

13935

\[ {} \frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-{y^{\prime }}^{2} x +y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

13937

\[ {} y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y\right ) y^{\prime } = \cos \left (x \right ) \]

13939

\[ {} \left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

14162

\[ {} {y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]

14204

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

14915

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

15145

\[ {} y^{\prime \prime } y^{\prime } = 1 \]

15148

\[ {} x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

15164

\[ {} y^{\prime \prime } y^{\prime } = 1 \]

15179

\[ {} 2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

15715

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

15716

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

16551

\[ {} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

16843

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

16861

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16874

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16875

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16876

\[ {} y^{3} y^{\prime \prime } = -1 \]

17113

\[ {} y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

17493

\[ {} y^{\prime \prime }-\frac {t}{y} = \frac {1}{\pi } \]

17614

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17615

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17903

\[ {} 2 \left (2 a -y\right ) y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

17909

\[ {} y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3} \]

17910

\[ {} x^{2} y^{2} y^{\prime \prime }-3 x y^{2} y^{\prime }+4 y^{3}+x^{6} = 0 \]

17912

\[ {} x \left (y^{\prime } x^{2}+2 x y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} x +8 x y y^{\prime }+4 y^{2}-1 = 0 \]

17913

\[ {} x \left (x y+1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 x y+2\right ) y^{\prime }+y^{2}+1 = 0 \]

17972

\[ {} y^{\prime \prime } = x +y^{2} \]

18120

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18126

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18127

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18151

\[ {} \left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

18529

\[ {} 1+{y^{\prime }}^{2}+\frac {m y^{\prime \prime }}{\sqrt {1+{y^{\prime }}^{2}}} = 0 \]

18632

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 1 \]

18633

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0 \]

18892

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

18895

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18901

\[ {} a^{2} y^{\prime \prime } y^{\prime } = x \]

18929

\[ {} y^{3} y^{\prime \prime } = a \]

18931

\[ {} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

18937

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

18963

\[ {} y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

19304

\[ {} y^{3} y^{\prime \prime } = a \]

19323

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

19327

\[ {} y y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

19330

\[ {} a^{2} y^{\prime \prime } y^{\prime } = x \]

19332

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19334

\[ {} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19335

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19336

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19527

\[ {} 2 x^{2} \cos \left (y\right ) y^{\prime \prime }-2 x^{2} \sin \left (y\right ) {y^{\prime }}^{2}+x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = \ln \left (x \right ) \]

19535

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]