40.14.10 problem 31

Internal problem ID [6781]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 19. Linear equations with variable coefficients (Misc. types). Supplemetary problems. Page 132
Problem number : 31
Date solved : Sunday, March 30, 2025 at 11:22:31 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{2} \ln \left (y\right ) \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 18
ode:=y(x)*diff(diff(y(x),x),x)-diff(y(x),x)^2 = y(x)^2*ln(y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {c_1 \,{\mathrm e}^{x}}{2}+\frac {c_2 \,{\mathrm e}^{-x}}{2}} \]
Mathematica. Time used: 1.005 (sec). Leaf size: 63
ode=y[x]*D[y[x],{x,2}]-D[y[x],x]^2==y[x]^2*Log[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to e^{\frac {1}{2} \left (e^{x+c_2}-c_1 e^{-x-c_2}\right )} \\ y(x)\to e^{\frac {1}{2} \left (e^{-x-c_2}-c_1 e^{x+c_2}\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2*log(y(x)) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational