Internal
problem
ID
[6826]
Book
:
Advanced
Mathematical
Methods
for
Scientists
and
Engineers,
Bender
and
Orszag.
Springer
October
29,
1999
Section
:
Chapter
3.
APPROXIMATE
SOLUTION
OF
LINEAR
DIFFERENTIAL
EQUATIONS.
page
136
Problem
number
:
3.6
(c)
Date
solved
:
Sunday, March 30, 2025 at 11:23:50 AM
CAS
classification
:
[_Gegenbauer]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+12*y(x) = 0; ic:=y(0) = 0, D(y)(0) = 3; dsolve([ode,ic],y(x),type='series',x=0);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+12*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==3}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + 12*y(x),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 3} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)