44.4.2 problem 1 (b)

Internal problem ID [7015]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 1 (b)
Date solved : Sunday, March 30, 2025 at 11:34:05 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (3\right )&=0 \end{align*}

Maple. Time used: 0.172 (sec). Leaf size: 55
ode:=diff(y(x),x) = x^2-y(x)^2; 
ic:=y(3) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {x \left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselK}\left (\frac {3}{4}, \frac {9}{2}\right )-\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {9}{2}\right )\right )}{\operatorname {BesselK}\left (\frac {3}{4}, \frac {9}{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {9}{2}\right )} \]
Mathematica. Time used: 0.082 (sec). Leaf size: 216
ode=D[y[x],x]==x^2-y[x]^2; 
ic={y[3]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^2 \left (-9 i \operatorname {BesselJ}\left (-\frac {5}{4},\frac {9 i}{2}\right )-\operatorname {BesselJ}\left (-\frac {1}{4},\frac {9 i}{2}\right )+9 i \operatorname {BesselJ}\left (\frac {3}{4},\frac {9 i}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+9 i x^2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )+9 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \left (\operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )-i x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )}{x \left (18 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {9 i}{2}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\left (-9 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {9 i}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {9 i}{2}\right )+9 \operatorname {BesselJ}\left (\frac {3}{4},\frac {9 i}{2}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + y(x)**2 + Derivative(y(x), x),0) 
ics = {y(3): 0} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list