44.4.30 problem 11 (b)

Internal problem ID [7043]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.1 Solution curves without a solution. Exercises 2.1 at page 44
Problem number : 11 (b)
Date solved : Sunday, March 30, 2025 at 11:36:16 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \end{align*}

With initial conditions

\begin{align*} y \left (-1\right )&=0 \end{align*}

Maple. Time used: 0.043 (sec). Leaf size: 35
ode:=diff(y(x),x) = y(x)-cos(1/2*Pi*x); 
ic:=y(-1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {-2 \pi \,{\mathrm e}^{1+x}-2 \pi \sin \left (\frac {\pi x}{2}\right )+4 \cos \left (\frac {\pi x}{2}\right )}{\pi ^{2}+4} \]
Mathematica. Time used: 0.043 (sec). Leaf size: 39
ode=D[y[x],x]==y[x]-Cos[Pi/2*x]; 
ic={y[-1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {4 \cos \left (\frac {\pi x}{2}\right )-2 \pi \left (e^{x+1}+\sin \left (\frac {\pi x}{2}\right )\right )}{4+\pi ^2} \]
Sympy. Time used: 0.218 (sec). Leaf size: 46
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + cos(pi*x/2) + Derivative(y(x), x),0) 
ics = {y(-1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {2 e \pi e^{x}}{4 + \pi ^{2}} - \frac {2 \pi \sin {\left (\frac {\pi x}{2} \right )}}{4 + \pi ^{2}} + \frac {4 \cos {\left (\frac {\pi x}{2} \right )}}{4 + \pi ^{2}} \]