Internal
problem
ID
[7435]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
19
Date
solved
:
Sunday, March 30, 2025 at 12:04:00 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=diff(y(x),x) = x/y(x)+y(x)/x; ic:=y(-1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==x/y[x]+y[x]/x; ic={y[-1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x/y(x) + Derivative(y(x), x) - y(x)/x,0) ics = {y(-1): 0} dsolve(ode,func=y(x),ics=ics)