48.2.6 problem Example 3.23

Internal problem ID [7522]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 3. Ordinary Differential Equations. Section 3.3 SECOND ORDER ODE. Page 147
Problem number : Example 3.23
Date solved : Sunday, March 30, 2025 at 12:13:30 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=4 \sin \left (x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+y(x) = 4*sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 -2 x \right ) \cos \left (x \right )+\sin \left (x \right ) \left (c_2 +2\right ) \]
Mathematica. Time used: 0.026 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+y[x]==4*Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (-2 x+c_1) \cos (x)+c_2 \sin (x) \]
Sympy. Time used: 0.148 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 4*sin(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \sin {\left (x \right )} + \left (C_{1} - 2 x\right ) \cos {\left (x \right )} \]