49.4.11 problem 3(b)

Internal problem ID [7622]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 52
Problem number : 3(b)
Date solved : Sunday, March 30, 2025 at 12:17:24 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y \left (\pi \right )&=0 \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 8
ode:=diff(diff(y(x),x),x)+y(x) = 0; 
ic:=y(0) = 0, y(Pi) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = c_1 \sin \left (x \right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 10
ode=D[y[x],{x,2}]+y[x]==0; 
ic={y[0]==0,y[Pi]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \sin (x) \]
Sympy. Time used: 0.088 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, y(pi): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} \]