Internal
problem
ID
[7627]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
59
Problem
number
:
1(c)
Date
solved
:
Sunday, March 30, 2025 at 12:17:33 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+(-1+3*I)*diff(y(x),x)-3*I*y(x) = 0; ic:=y(0) = 2, D(y)(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+(3*I-1)*D[y[x],x]-3*I*y[x]==0; ic={y[0]==2,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(complex(-1, 3)*Derivative(y(x), x) + complex(0, -3)*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)