49.6.6 problem 1(f)

Internal problem ID [7634]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 69
Problem number : 1(f)
Date solved : Sunday, March 30, 2025 at 12:17:45 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)-7*diff(y(x),x)+6*y(x) = sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} c_2 +{\mathrm e}^{6 x} c_1 +\frac {7 \cos \left (x \right )}{74}+\frac {5 \sin \left (x \right )}{74} \]
Mathematica. Time used: 0.059 (sec). Leaf size: 32
ode=D[y[x],{x,2}]-7*D[y[x],x]+6*y[x]==Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {5 \sin (x)}{74}+\frac {7 \cos (x)}{74}+c_1 e^x+c_2 e^{6 x} \]
Sympy. Time used: 0.227 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*y(x) - sin(x) - 7*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} + C_{2} e^{6 x} + \frac {5 \sin {\left (x \right )}}{74} + \frac {7 \cos {\left (x \right )}}{74} \]