Internal
problem
ID
[7692]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
130
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:19:03 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(y(x),x),x)+(x-1)^2*diff(y(x),x)-(x-1)*y(x) = 0; ic:=y(1) = 1, D(y)(1) = 0; dsolve([ode,ic],y(x),type='series',x=1);
ode=D[y[x],{x,2}]+(x-1)^2*D[y[x],x]-(x-1)*y[x]==0; ic={y[1]==1,Derivative[1][y][1]==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 1)**2*Derivative(y(x), x) - (x - 1)*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=6)