52.3.24 problem 26

Internal problem ID [8310]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.4 SPECIAL FUNCTIONS. EXERCISES 6.4. Page 267
Problem number : 26
Date solved : Sunday, March 30, 2025 at 12:51:32 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 21
ode:=4*x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(16*x^2+3)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x}\, \left (c_1 \sin \left (2 x \right )+c_2 \cos \left (2 x \right )\right ) \]
Mathematica. Time used: 0.036 (sec). Leaf size: 39
ode=4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(16*x^2+3)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} e^{-2 i x} \sqrt {x} \left (4 c_1-i c_2 e^{4 i x}\right ) \]
Sympy. Time used: 0.246 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + (16*x**2 + 3)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} J_{\frac {1}{2}}\left (2 x\right ) + C_{2} Y_{\frac {1}{2}}\left (2 x\right )\right ) \]