54.4.19 problem 20

Internal problem ID [8603]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 18. Power series solutions. 18.4 Indicial Equation with Difference of Roots Nonintegral. Exercises page 365
Problem number : 20
Date solved : Sunday, March 30, 2025 at 01:21:00 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 19
Order:=8; 
ode:=2*x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \sqrt {x}+c_2 \,x^{2}+O\left (x^{8}\right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 18
ode=2*x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_1 x^2+c_2 \sqrt {x} \]
Sympy. Time used: 0.702 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{2} x^{2} + C_{1} \sqrt {x} + O\left (x^{8}\right ) \]