Internal
problem
ID
[8745]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
34
Date
solved
:
Sunday, March 30, 2025 at 01:29:30 PM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(p(t),t) = a*p(t)-b*p(t)^2; ic:=p(t0) = p0; dsolve([ode,ic],p(t), singsol=all);
ode=D[p[t],t]==a*p[t]-b*p[t]^2; ic=p[t0]==p0; DSolve[{ode,ic},p[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") p = Function("p") ode = Eq(-a*p(t) + b*p(t)**2 + Derivative(p(t), t),0) ics = {p(t0): p0} dsolve(ode,func=p(t),ics=ics)