Internal
problem
ID
[8760]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
48
Date
solved
:
Sunday, March 30, 2025 at 01:30:36 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=(t^2+9)*diff(diff(y(t),t),t)+2*t*diff(y(t),t) = 0; ic:=y(3) = 2*Pi, D(y)(3) = 2/3; dsolve([ode,ic],y(t), singsol=all);
ode=(t^2+9)*D[y[t],{t,2}]+2*t*D[y[t],t]==0; ic={y[3]==2*Pi,Derivative[1][y][3 ]==2/3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t*Derivative(y(t), t) + (t**2 + 9)*Derivative(y(t), (t, 2)),0) ics = {y(3): 2*pi, Subs(Derivative(y(t), t), t, 3): 2/3} dsolve(ode,func=y(t),ics=ics)