Internal
problem
ID
[8765]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
53
Date
solved
:
Sunday, March 30, 2025 at 01:30:45 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=t*diff(diff(y(t),t),t)-diff(y(t),t)+4*t^3*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t*D[y[t],{t,2}]-D[y[t],t]+4*t^3*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*t**3*y(t) + t*Derivative(y(t), (t, 2)) - Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)