Internal
problem
ID
[8788]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
76
Date
solved
:
Sunday, March 30, 2025 at 01:35:49 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)+y(t)-z(t), diff(y(t),t) = -x(t)+2*z(t), diff(z(t),t) = -x(t)-2*y(t)+4*z(t)]; dsolve(ode);
ode={D[x[t],t]== 2*x[t]+y[t]-z[t],D[y[t],t] == -x[t]+2*z[t],D[z[t],t]==-x[t]-2*y[t]+4*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-2*x(t) - y(t) + z(t) + Derivative(x(t), t),0),Eq(x(t) - 2*z(t) + Derivative(y(t), t),0),Eq(x(t) + 2*y(t) - 4*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)