56.1.85 problem 84

Internal problem ID [8797]
Book : Own collection of miscellaneous problems
Section : section 1.0
Problem number : 84
Date solved : Sunday, March 30, 2025 at 01:37:36 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}+y^{2}-1 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 85
ode:=diff(y(x),x) = -1+x^2+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (-3-i\right ) \operatorname {WhittakerM}\left (1+\frac {i}{4}, \frac {1}{4}, i x^{2}\right )+4 \operatorname {WhittakerW}\left (1+\frac {i}{4}, \frac {1}{4}, i x^{2}\right ) c_1 +\left (-2 i x^{2}+i+1\right ) \operatorname {WhittakerM}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )+\left (-2 i x^{2}+i+1\right ) c_1 \operatorname {WhittakerW}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )}{2 x \left (c_1 \operatorname {WhittakerW}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )+\operatorname {WhittakerM}\left (\frac {i}{4}, \frac {1}{4}, i x^{2}\right )\right )} \]
Mathematica. Time used: 0.22 (sec). Leaf size: 153
ode=D[y[x],x]==x^2+y[x]^2-1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {i \left (x \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}-\frac {i}{2},(-1+i) x\right )+(1+i) \operatorname {ParabolicCylinderD}\left (\frac {1}{2}-\frac {i}{2},(-1+i) x\right )-c_1 x \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{2},(1+i) x\right )+(1-i) c_1 \operatorname {ParabolicCylinderD}\left (\frac {1}{2}+\frac {i}{2},(1+i) x\right )\right )}{\operatorname {ParabolicCylinderD}\left (-\frac {1}{2}-\frac {i}{2},(-1+i) x\right )+c_1 \operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{2},(1+i) x\right )} \\ y(x)\to \frac {(1+i) \operatorname {ParabolicCylinderD}\left (\frac {1}{2}+\frac {i}{2},(1+i) x\right )}{\operatorname {ParabolicCylinderD}\left (-\frac {1}{2}+\frac {i}{2},(1+i) x\right )}-i x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list