Internal
problem
ID
[8976]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
5.0
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 01:57:41 PM
CAS
classification
:
[_quadrature]
ode:=h(u)^2+2*a*h(u)/(1+diff(h(u),u)^2)^(1/2) = b^2; dsolve(ode,h(u), singsol=all);
ode=h[u]^2 + 2*a*h[u]/Sqrt[1 + (D[ h[u],u])^2] == b^2; ic={}; DSolve[{ode,ic},h[u],u,IncludeSingularSolutions->True]
from sympy import * u = symbols("u") a = symbols("a") b = symbols("b") h = Function("h") ode = Eq(2*a*h(u)/sqrt(Derivative(h(u), u)**2 + 1) - b**2 + h(u)**2,0) ics = {} dsolve(ode,func=h(u),ics=ics)
Timed Out