[[_homogeneous, `class C`], _dAlembert]
Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)
Mathematica ✓
cpu = 1.54616 (sec), leaf count = 71
Maple ✓
cpu = 1.334 (sec), leaf count = 195
DSolve[c^2*(b^2 - (c*x - a*y[x])^2) + 2*a*b^2*c*y'[x] + a^2*(b^2 - (c*x - a*y[x])^2)*y'[x]^2 == 0,y[x],x]
Mathematica raw output
{{y[x] -> (-Sqrt[b^2 - c^2*(x - C[1])^2] + c*C[1])/a}, {y[x] -> (Sqrt[b^2 - c^2*
(x - C[1])^2] + c*C[1])/a}}
Maple raw input
dsolve(a^2*(b^2-(c*x-a*y(x))^2)*diff(y(x),x)^2+2*a*b^2*c*diff(y(x),x)+c^2*(b^2-(c*x-a*y(x))^2) = 0, y(x),'implicit')
Maple raw output
(a^2*y(x)^2-2*y(x)*a*c*x+c^2*x^2-2*b^2)/a^2 = 0, x-Intat(-1/2*a*(_a^2*a^2-2*b^2+
(-a^2*_a^2*(_a^2*a^2-2*b^2))^(1/2))/(_a^2*a^2-2*b^2)/c,_a = y(x)-1/a*c*x)-_C1 =
0, x-Intat(-1/2*a*(_a^2*a^2-2*b^2-(-a^2*_a^2*(_a^2*a^2-2*b^2))^(1/2))/(_a^2*a^2-
2*b^2)/c,_a = y(x)-1/a*c*x)-_C1 = 0