4.21.5 (ax3y(x)3)y(x)+x2y(x)+xy(x)2y(x)2=0

ODE
(ax3y(x)3)y(x)+x2y(x)+xy(x)2y(x)2=0 ODE Classification

[_rational]

Book solution method
Change of variable

Mathematica
cpu = 599.998 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 1.357 (sec), leaf count = 129

{(y(x))6+(2x32a)(y(x))3+(x3+a)2=0,_by(x)_a21x6+(2_a32a)x3+(_a3+a)2d_aln(x)2_C1=0,_by(x)_a21x6+(2_a32a)x3+(_a3+a)2d_a+ln(x)2_C1=0} Mathematica raw input

DSolve[x^2*y[x] + (a - x^3 - y[x]^3)*y'[x] + x*y[x]^2*y'[x]^2 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(x*y(x)^2*diff(y(x),x)^2+(a-x^3-y(x)^3)*diff(y(x),x)+x^2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^6+(-2*x^3-2*a)*y(x)^3+(-x^3+a)^2 = 0, Int(1/(x^6+(-2*_a^3-2*a)*x^3+(-_a^3+a
)^2)^(1/2)*_a^2,_a = _b .. y(x))+1/2*ln(x)-_C1 = 0, Int(1/(x^6+(-2*_a^3-2*a)*x^3
+(-_a^3+a)^2)^(1/2)*_a^2,_a = _b .. y(x))-1/2*ln(x)-_C1 = 0