4.3.1 y(x)=ax+by(x)

ODE
y(x)=ax+by(x) ODE Classification

[[_homogeneous, `class G`], _Chini]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 0.221863 (sec), leaf count = 116

Solve[b2log(b2(b2y(x)a2x2+2y(x)ax21))+2b3tanh1(b24ab2y(x)a2x2b8a+b2)8a+b2+2ac1+2b2log(x)a=0,y(x)]

Maple
cpu = 0.078 (sec), leaf count = 68

{12ln(y(x)bx+ax22y(x))+by(x)Artanh(1(by(x)+2ax)1y(x)(b2+8a))1y(x)(b2+8a)+_C1=0} Mathematica raw input

DSolve[y'[x] == a*x + b*Sqrt[y[x]],y[x],x]

Mathematica raw output

Solve[((2*b^3*ArcTanh[(b^2 - 4*a*Sqrt[(b^2*y[x])/(a^2*x^2)])/(b*Sqrt[8*a + b^2])
])/Sqrt[8*a + b^2] + 2*a*C[1] + 2*b^2*Log[x] + b^2*Log[b^2*(-1 + (2*y[x])/(a*x^2
) - Sqrt[(b^2*y[x])/(a^2*x^2)])])/a == 0, y[x]]

Maple raw input

dsolve(diff(y(x),x) = a*x+b*y(x)^(1/2), y(x),'implicit')

Maple raw output

-1/2*ln(y(x)^(1/2)*b*x+a*x^2-2*y(x))+b*y(x)^(1/2)/(y(x)*(b^2+8*a))^(1/2)*arctanh
((b*y(x)^(1/2)+2*a*x)/(y(x)*(b^2+8*a))^(1/2))+_C1 = 0