ODE
\[ y'(x)^3+2 x y'(x)-y(x)=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries], _dAlembert]
Book solution method
No Missing Variables ODE, Solve for \(y\)
Mathematica ✗
cpu = 600. (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.014 (sec), leaf count = 33
\[ \left \{ [x \left ( {\it \_T} \right ) ={\frac {1}{{{\it \_T}}^{2}} \left ( -{\frac {3\,{{\it \_T}}^{4}}{4}}+{\it \_C1} \right ) },y \left ( {\it \_T} \right ) ={\frac {-{{\it \_T}}^{4}+4\,{\it \_C1}}{2\,{\it \_T}}}] \right \} \] Mathematica raw input
DSolve[-y[x] + 2*x*y'[x] + y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(diff(y(x),x)^3+2*x*diff(y(x),x)-y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = 1/_T^2*(-3/4*_T^4+_C1), y(_T) = 1/2*(-_T^4+4*_C1)/_T]