4.21.38 \(y'(x)^3-y(x) y'(x)-x=0\)

ODE
\[ y'(x)^3-y(x) y'(x)-x=0 \] ODE Classification

[_dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 185.849 (sec), leaf count = 1

\[\text {$\$$Aborted}\]

Maple
cpu = 0.019 (sec), leaf count = 52

\[ \left \{ [x \left ( {\it \_T} \right ) ={{\it \_T} \left ( 2\,\sqrt {{{\it \_T}}^{2}+1}+{\it \_C1} \right ) {\frac {1}{\sqrt {{{\it \_T}}^{2}+1}}}},y \left ( {\it \_T} \right ) =-{1 \left ( 2\,\sqrt {{{\it \_T}}^{2}+1}+{\it \_C1} \right ) {\frac {1}{\sqrt {{{\it \_T}}^{2}+1}}}}+{{\it \_T}}^{2}] \right \} \] Mathematica raw input

DSolve[-x - y[x]*y'[x] + y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(diff(y(x),x)^3-y(x)*diff(y(x),x)-x = 0, y(x),'implicit')

Maple raw output

[x(_T) = 1/(_T^2+1)^(1/2)*_T*(2*(_T^2+1)^(1/2)+_C1), y(_T) = -1/(_T^2+1)^(1/2)*(
2*(_T^2+1)^(1/2)+_C1)+_T^2]