4.21.40 \(y'(x)^3-2 y(x) y'(x)+y(x)^2=0\)

ODE
\[ y'(x)^3-2 y(x) y'(x)+y(x)^2=0 \] ODE Classification

[_quadrature]

Book solution method
Missing Variables ODE, Independent variable missing, Solve for \(y\)

Mathematica
cpu = 0 (sec), leaf count = 0 , crash

Kernel Crash

Maple
cpu = 0.052 (sec), leaf count = 259

\[ \left \{ x-\int ^{y \left ( x \right ) }\!6\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}}}}{ \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}} \right ) ^{2/3}+24\,{\it \_a}}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!12\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}}}}{ \left ( i\sqrt {3}-1 \right ) \left ( 12\,i{\it \_a}\,\sqrt {3}+ \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}} \right ) ^{2/3}-12\,{\it \_a} \right ) }}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!12\,{\frac {\sqrt [3]{-108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}}}}{ \left ( i\sqrt {3}+1 \right ) \left ( 12\,i{\it \_a}\,\sqrt {3}- \left ( -108\,{{\it \_a}}^{2}+12\,\sqrt {3}\sqrt {27\,{{\it \_a}}^{4}-32\,{{\it \_a}}^{3}} \right ) ^{2/3}+12\,{\it \_a} \right ) }}{d{\it \_a}}-{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[y[x]^2 - 2*y[x]*y'[x] + y'[x]^3 == 0,y[x],x]

Mathematica raw output

""

Maple raw input

dsolve(diff(y(x),x)^3-2*y(x)*diff(y(x),x)+y(x)^2 = 0, y(x),'implicit')

Maple raw output

x-Intat(6/((-108*_a^2+12*3^(1/2)*(27*_a^4-32*_a^3)^(1/2))^(2/3)+24*_a)*(-108*_a^
2+12*3^(1/2)*(27*_a^4-32*_a^3)^(1/2))^(1/3),_a = y(x))-_C1 = 0, x-Intat(12/(I*3^
(1/2)+1)/(12*I*_a*3^(1/2)-(-108*_a^2+12*3^(1/2)*(27*_a^4-32*_a^3)^(1/2))^(2/3)+1
2*_a)*(-108*_a^2+12*3^(1/2)*(27*_a^4-32*_a^3)^(1/2))^(1/3),_a = y(x))-_C1 = 0, x
-Intat(12/(I*3^(1/2)-1)/(12*I*_a*3^(1/2)+(-108*_a^2+12*3^(1/2)*(27*_a^4-32*_a^3)
^(1/2))^(2/3)-12*_a)*(-108*_a^2+12*3^(1/2)*(27*_a^4-32*_a^3)^(1/2))^(1/3),_a = y
(x))-_C1 = 0