ODE
\[ y'(x)^3-y'(x)^2+y(x)^2=0 \] ODE Classification
[_quadrature]
Book solution method
Missing Variables ODE, Independent variable missing, Use new variable
Mathematica ✗
cpu = 599.997 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.056 (sec), leaf count = 429
\[ \left \{ x-\int ^{y \left ( x \right ) }\!6\,{\frac {\sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }}{ \left ( -4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) \right ) ^{2/3}+2\,\sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }+4}}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!-12\,{\frac {\sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }}{ \left ( i\sqrt {3}-1 \right ) \left ( \sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }-2 \right ) \left ( i\sqrt {3}-\sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }-1 \right ) }}{d{\it \_a}}-{\it \_C1}=0,x-\int ^{y \left ( x \right ) }\!-12\,{\frac {\sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }}{ \left ( i\sqrt {3}+1 \right ) \left ( i\sqrt {3}+\sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }+1 \right ) \left ( \sqrt [3]{-4/3\,\sqrt {3} \left ( 27\,\sqrt {3}{{\it \_a}}^{2}-2\,\sqrt {3}-9\,\sqrt {27\,{{\it \_a}}^{4}-4\,{{\it \_a}}^{2}} \right ) }-2 \right ) }}{d{\it \_a}}-{\it \_C1}=0 \right \} \] Mathematica raw input
DSolve[y[x]^2 - y'[x]^2 + y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(diff(y(x),x)^3-diff(y(x),x)^2+y(x)^2 = 0, y(x),'implicit')
Maple raw output
x-Intat(6/((-4/3*3^(1/2)*(27*3^(1/2)*_a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(
2/3)+2*(-4/3*3^(1/2)*(27*3^(1/2)*_a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(1/3)
+4)*(-4/3*3^(1/2)*(27*3^(1/2)*_a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(1/3),_a
= y(x))-_C1 = 0, x-Intat(-12/(I*3^(1/2)+1)/(I*3^(1/2)+(-4/3*3^(1/2)*(27*3^(1/2)
*_a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(1/3)+1)/((-4/3*3^(1/2)*(27*3^(1/2)*_
a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(1/3)-2)*(-4/3*3^(1/2)*(27*3^(1/2)*_a^2
-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(1/3),_a = y(x))-_C1 = 0, x-Intat(-12*(-4/
3*3^(1/2)*(27*3^(1/2)*_a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(1/3)/(I*3^(1/2)
-1)/((-4/3*3^(1/2)*(27*3^(1/2)*_a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))^(1/3)-2
)/(I*3^(1/2)-(-4/3*3^(1/2)*(27*3^(1/2)*_a^2-2*3^(1/2)-9*(27*_a^4-4*_a^2)^(1/2)))
^(1/3)-1),_a = y(x))-_C1 = 0