ODE
\[ x^4 \left (-y'(x)\right )+2 x^3 y(x)+3 y'(x)^3=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries]]
Book solution method
No Missing Variables ODE, Solve for \(y\)
Mathematica ✗
cpu = 599.997 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.361 (sec), leaf count = 37
\[ \left \{ \left ( y \left ( x \right ) \right ) ^{2}-{\frac {{x}^{6}}{81}}=0,[y \left ( {\it \_T} \right ) ={\frac {{{\it \_C1}}^{4}{{\it \_T}}^{2}-3}{2\,{{\it \_C1}}^{3}}},x \left ( {\it \_T} \right ) ={\it \_C1}\,{\it \_T}] \right \} \] Mathematica raw input
DSolve[2*x^3*y[x] - x^4*y'[x] + 3*y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(3*diff(y(x),x)^3-x^4*diff(y(x),x)+2*x^3*y(x) = 0, y(x),'implicit')
Maple raw output
y(x)^2-1/81*x^6 = 0, [y(_T) = 1/2*(_C1^4*_T^2-3)/_C1^3, x(_T) = _C1*_T]