4.22.11 \(x^4 \left (-y'(x)\right )+2 x^3 y(x)+3 y'(x)^3=0\)

ODE
\[ x^4 \left (-y'(x)\right )+2 x^3 y(x)+3 y'(x)^3=0 \] ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
No Missing Variables ODE, Solve for \(y\)

Mathematica
cpu = 599.997 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.361 (sec), leaf count = 37

\[ \left \{ \left ( y \left ( x \right ) \right ) ^{2}-{\frac {{x}^{6}}{81}}=0,[y \left ( {\it \_T} \right ) ={\frac {{{\it \_C1}}^{4}{{\it \_T}}^{2}-3}{2\,{{\it \_C1}}^{3}}},x \left ( {\it \_T} \right ) ={\it \_C1}\,{\it \_T}] \right \} \] Mathematica raw input

DSolve[2*x^3*y[x] - x^4*y'[x] + 3*y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(3*diff(y(x),x)^3-x^4*diff(y(x),x)+2*x^3*y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^2-1/81*x^6 = 0, [y(_T) = 1/2*(_C1^4*_T^2-3)/_C1^3, x(_T) = _C1*_T]