4.22.18 2xy(x)33y(x)y(x)2x=0

ODE
2xy(x)33y(x)y(x)2x=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 603.304 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.028 (sec), leaf count = 33

{x3+(y(x))3=0,[x(_T)=_C1_T2,y(_T)=2_C1_T33_C13]} Mathematica raw input

DSolve[-x - 3*y[x]*y'[x]^2 + 2*x*y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(2*x*diff(y(x),x)^3-3*y(x)*diff(y(x),x)^2-x = 0, y(x),'implicit')

Maple raw output

x^3+y(x)^3 = 0, [x(_T) = _C1*_T^2, y(_T) = 2/3*_C1*_T^3-1/3*_C1]