ODE
\[ y(x)^2 y'(x)^3-x y'(x)+y(x)=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries]]
Book solution method
No Missing Variables ODE, Solve for \(x\)
Mathematica ✗
cpu = 600.001 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.631 (sec), leaf count = 42
\[ \left \{ [x \left ( {\it \_T} \right ) ={\frac {16\,{{\it \_C1}}^{2}{{\it \_T}}^{4}+8\,{\it \_C1}\,{{\it \_T}}^{2}-3}{16\,{{\it \_T}}^{4}}},y \left ( {\it \_T} \right ) ={\frac {4\,{\it \_C1}\,{{\it \_T}}^{2}-1}{4\,{{\it \_T}}^{3}}}] \right \} \] Mathematica raw input
DSolve[y[x] - x*y'[x] + y[x]^2*y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(y(x)^2*diff(y(x),x)^3-x*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = 1/16*(16*_C1^2*_T^4+8*_C1*_T^2-3)/_T^4, y(_T) = 1/4*(4*_C1*_T^2-1)/_T^3
]