ODE
\[ y(x)^3 y'(x)^3-x y'(x)+y(x)=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries]]
Book solution method
No Missing Variables ODE, Solve for \(x\)
Mathematica ✗
cpu = 599.998 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.541 (sec), leaf count = 60
\[ \left \{ [x \left ( {\it \_T} \right ) ={\frac {\sqrt {5}}{25}\sqrt {5\,{\it \_C1}\,{{\it \_T}}^{{\frac {22}{3}}}-2\,{{\it \_T}}^{{\frac {17}{3}}}} \left ( 5\,{\it \_C1}\,{{\it \_T}}^{5/3}+3 \right ) {{\it \_T}}^{-{\frac {16}{3}}}},y \left ( {\it \_T} \right ) ={\frac {\sqrt {5}}{5}\sqrt {5\,{\it \_C1}\,{{\it \_T}}^{{\frac {22}{3}}}-2\,{{\it \_T}}^{{\frac {17}{3}}}}{{\it \_T}}^{-{\frac {13}{3}}}}] \right \} \] Mathematica raw input
DSolve[y[x] - x*y'[x] + y[x]^3*y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(y(x)^3*diff(y(x),x)^3-x*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = 1/25*5^(1/2)*(5*_C1*_T^(22/3)-2*_T^(17/3))^(1/2)/_T^(16/3)*(5*_C1*_T^(5
/3)+3), y(_T) = 1/5/_T^(13/3)*5^(1/2)*(5*_C1*_T^(22/3)-2*_T^(17/3))^(1/2)]