ODE
\[ y'(x)^4+x y'(x)-3 y(x)=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries], _dAlembert]
Book solution method
No Missing Variables ODE, Solve for \(x\)
Mathematica ✗
cpu = 599.999 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.019 (sec), leaf count = 31
\[ \left \{ [x \left ( {\it \_T} \right ) =\sqrt {{\it \_T}} \left ( {\frac {4}{5}{{\it \_T}}^{{\frac {5}{2}}}}+{\it \_C1} \right ) ,y \left ( {\it \_T} \right ) ={\frac {3\,{{\it \_T}}^{4}}{5}}+{\frac {{\it \_C1}}{3}{{\it \_T}}^{{\frac {3}{2}}}}] \right \} \] Mathematica raw input
DSolve[-3*y[x] + x*y'[x] + y'[x]^4 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(diff(y(x),x)^4+x*diff(y(x),x)-3*y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = _T^(1/2)*(4/5*_T^(5/2)+_C1), y(_T) = 3/5*_T^4+1/3*_T^(3/2)*_C1]